Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Phytomedicine ; 127: 155471, 2024 May.
Article in English | MEDLINE | ID: mdl-38452695

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is notorious for the aggressive behaviors and easily results in chemo-resistance. Studies have shown that the use of herbal medicines as treatments for GBM as limited by the blood-brain barrier (BBB) and glioma stem cells. PURPOSE: The aim of this study was to investigate the relationship between GBM suppression and α-terpineol, the monoterpenoid alcohol derived from Eucalyptus glubulus and Pinus merkusii. STUDY DESIGN: Using serial in-vitro and in-vivo studies to confirm the mechanism of α-terpineol on down-regulating GBM development. METHODS: The 3-[4,5-dimethylthiazol-2-yl)]-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate IC50 of α-terpineol to inhibit GBM cell survival. In order to evaluate the impact of GBM aggressive behaviors by α-terpineol, the analysis of cell migration, invasion and colony formation were implemented. In addition, the ability of tumor spheres and WB of CD44 and OCT3/4 were evaluated under the impression of α-terpineol decreased GBM stemness. The regulation of neoangiogenesis by α-terpineol via the WB of angiogenic factors and human umbilical vein endothelial cells (HUVEC) tube assay. To survey the decided factors of α-terpineol downregulating GBM chemoresistance depended on the impact of O6-methylguanine-DNA methyltransferase (MGMT) expression and autophagy-related factors activation. Additionally, WB and quantitative real-time polymerase chain reaction (qRT/PCR) of KDEL (Lys-Asp-Glu-Leu) containing 2 (KDELC2), endoplasmic reticulum (ER) stress, phosphoinositide 3-kinase (PI3k), mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) cascade signaling factors were examined to explore the mechanism of α-terpineol inhibiting GBM viability. Finally, the orthotopic GBM mouse model was applied to prove the efficacy and toxicity of α-terpineol on regulating GBM survival. RESULTS: α-terpineol significantly suppressed GBM growth, migration, invasion, angiogenesis and temozolomide (TMZ) resistance. Furthermore, α-terpineol specifically targeted KDELC2 to downregulate Notch and PI3k/mTOR/MAPK signaling pathway. Finally, we also demonstrated that α-terpineol could penetrate the BBB to inhibit GBM proliferation, which resulted in reduced cytotoxicity to vital organs. CONCLUSION: Compared to published literatures, we firstly proved α-terpineol possessed the capability to inhibit GBM through various mechanisms and potentially decreased the occurrence of chemoresistance, making it a promising alternative therapeutic option for GBM in the future.


Subject(s)
Brain Neoplasms , Cyclohexane Monoterpenes , Glioblastoma , Mice , Animals , Humans , Glioblastoma/drug therapy , Glioblastoma/metabolism , Phosphatidylinositol 3-Kinases , Endothelial Cells/metabolism , Brain Neoplasms/drug therapy , TOR Serine-Threonine Kinases , Phosphatidylinositol 3-Kinase , Cell Line, Tumor , Drug Resistance, Neoplasm , Mammals
2.
Chem Biol Interact ; 389: 110869, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38216027

ABSTRACT

The ability of bladder cancer to invade and metastasize often leads to poor prognosis in bladder cancer patients. The aim of this study was to evaluate the effect of the farnesoid X receptor (FXR) agonist GW4064 on the migration and invasion of human bladder cancer cells. Long-term exposure to GW4064 decreased the colony formation of RT4 and T24 cells. The wound healing migration assay revealed an inhibitory effect of GW4064 on both of these bladder cancer cell lines. In addition, integrin ß3 expression and myosin light chain phosphorylation were decreased after GW4064 treatment. Immunocytochemistry showed an increase in E-cadherin and a decrease in ß-catenin in the cell membrane of bladder cancer cells. Total protein expression and membrane fractionation assays also indicated upregulation of E-cadherin and downregulation of ß-catenin. Moreover, GW4064 reduced the invasion of muscle-invasive T24 cells. The GW4064-decreased migration and invasion were reversed by the proteasome inhibitor MG132 and the lysosome inhibitor NH4Cl. Furthermore, the GW4064-induced inhibition of matrix metalloproteinase-2 (MMP2) and cathepsin B expression was reversed by NH4Cl. Xenograft animal studies revealed that GW4064 declined MMP2, cathepsin B and lung metastasis of bladder cancer. In conclusion, GW4064 decreases the migration and invasion of human bladder cancer cells, which may provide a new therapeutic strategy for the treatment of human bladder cancer.


Subject(s)
Isoxazoles , Urinary Bladder Neoplasms , beta Catenin , Animals , Humans , beta Catenin/metabolism , Matrix Metalloproteinase 2/metabolism , Down-Regulation , Cathepsin B , Cell Line, Tumor , Urinary Bladder Neoplasms/metabolism , Cadherins/metabolism , Cell Movement , Neoplasm Invasiveness
3.
Am J Cancer Res ; 13(11): 5271-5288, 2023.
Article in English | MEDLINE | ID: mdl-38058807

ABSTRACT

In early-stage colorectal cancer (CRC), AQP8, GUCA2B, and SPIB were important suppressor genes and frequently co-expressed. However, the underlying co-regulation effect remains unknown and need to be elucidated. We aimed to investigate the co-regulatory network of AQP8, GUCA2B, and SPIB in CRC using in vitro and in silico methods. Q-PCR, western blot, and immunohistochemistry were used to assess the co-regulatory network of the target genes in the HCT-116 cell line and fresh tumor tissues. Bioinformatical methods were used to validate the findings using the Cancer Genome Atlas COlon ADenocarcinoma and REctum ADenocarcinoma datasets, as well as large scale integrated data sets from Gene Expression Omnibus. In clinical CRC tissues, SPIB, AQP8, and GUCA2B were barely expressed compared to normal mucosa. When compared to 22 well-known genetic biomarkers, they are independent predictors of CRC identification with near 100% accuracy. In the co-regulatory network, they were co-upregulated at the mRNA and protein expression levels. AQP8, GUCA2B and SPIB were linked to immune cell infiltration and GUCA2B and SPIB were negatively associated with tumor purity. The co-regulatory network in miRNA-mRNA analysis was mediated by cancer-related microRNAs miR-182-5p and miR-27a-3. The functional analysis of the co-regulatory network's protein-protein interaction networks reveals three clusters and three major functions: complex interactions of transcription factors in mediating cytokine biology in T cells (SPIB cluster), guanylin, and Intestinal infectious diseases (GUCA2B cluster), and water channel activity balance (AQP8 cluster). The co-regulatory network of SPIB, AQP8, and GUCA2B was confirmed. MiR-27a-3p and miR-182-5p were two possible mediators. The mechanisms of SPIB, AQP8, GUCA2B, miR-182-5p, and miR-27a-3p in CRC merit further investigation.

5.
Cell Mol Biol (Noisy-le-grand) ; 69(7): 71-79, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37715423

ABSTRACT

The roles of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3C (A3C) in various human malignancies are not consistent. A3C expression is correlated with early-stage breast cancer and is presented as a good prognostic factor; however, it induces fewer therapeutic effects of cytotoxic drugs in low-grade gliomas. To explore the impact of A3C on gliomas, a statistical analysis of several public databases was conducted. The results showed that enhanced A3C expression was associated with advanced tumor grades and poor expression of prognostic factors. Similarly, our in vitro study revealed that glioblastoma (GBM) cell lines had higher A3C mRNA and protein expression than that of normal brain tissue cDNA and lysates. We first performed an immunohistochemical stain (IHC) to prove that gliomas with high A3C expression presented the wild type-Isocitrate dehydrogenase 1 (IDH1), and they had an unfavorable prognosis in human glioma tissues. In addition, the oncological factors associated with A3C expression suggested that DNA repair pathways are important mechanisms for inducing tumorigenesis and chemoresistance in gliomas. Moreover, a significant correlation was observed between A3C expression and proteolipid protein 2  (PLP2). Reactive oxygen species (ROS) -activated PLP2 prevents DNA damage-induced cell apoptosis. Compared to high immunostaining scores for A3C and/or PLP2 expression, combined low immunostaining scores for A3C and PLP2 correlated with improved survival in gliomas; however, the detailed mechanism is to be elucidated. In conclusion, our results not only confirmed A3C played an important role in glioma development, but the A3C IHC test could successfully predict the therapeutic effects and disease prognosis.


Subject(s)
Glioblastoma , Female , Humans , Apoptosis , Brain , Glioblastoma/diagnosis , Glioblastoma/metabolism , MARVEL Domain-Containing Proteins , Proteolipids , Prognosis
6.
Cell Death Dis ; 14(6): 369, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37344492

ABSTRACT

Acute lung injury (ALI) is characterised by severe pulmonary inflammation, alveolar-capillary barrier disruption, and pulmonary oedema. Therefore, establishing effective therapeutic targets for ALI prevention is crucial. The present study reports a novel function of RNF128 in regulating LPS-induced ALI. Severe lung damage and increased immune cell infiltration were detected in RNF128-deficient mice. In vitro experiments revealed that RNF128 inhibits neutrophil activation by binding to myeloperoxidase (MPO) and reducing its levels and activity. Moreover, RNF128 regulates alveolar macrophage activation and neutrophil infiltration by interacting with TLR4, targeting it for degradation, and inhibiting NF-κB activation, hence decreasing pro-inflammatory cytokines. Our results demonstrate for the first time that RNF128 is a negative regulator of MPO and TLR4 in neutrophils and alveolar macrophages, respectively. However, AAV9-mediated RNF128 overexpression alleviated lung tissue damage and reduced inflammatory cell infiltration. Thus, RNF128 is a promising therapeutic candidate for pharmacological interventions in ALI.


Subject(s)
Acute Lung Injury , NF-kappa B , Ubiquitin-Protein Ligases , Animals , Mice , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Acute Lung Injury/prevention & control , Lipopolysaccharides/pharmacology , Lung/metabolism , Neutrophil Infiltration , NF-kappa B/metabolism , Peroxidase/metabolism , Toll-Like Receptor 4/metabolism , Ubiquitin-Protein Ligases/metabolism
7.
Antioxidants (Basel) ; 12(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37107298

ABSTRACT

Glioblastoma is notorious for its rapid progression and neovascularization. In this study, it was found that KDEL (Lys-Asp-Glu-Leu) containing 2 (KDELC2) stimulated vasculogenic factor expression and induced human umbilical vein endothelial cell (HUVEC) proliferation. The NLRP3 inflammasome and autophagy activation via hypoxic inducible factor 1 alpha (HIF-1α) and mitochondrial reactive oxygen species (ROS) production was also confirmed. The application of the NLRP3 inflammasome inhibitor MCC950 and autophagy inhibitor 3-methyladenine (3-MA) indicated that the above phenomenon activation correlated with an endothelial overgrowth. Furthermore, KDELC2 suppression decreased the endoplasmic reticulum (ER) stress factors' expression. The ER stress inhibitors, such as salubrinal and GSK2606414, significantly suppressed HUVEC proliferation, indicating that ER stress promotes glioblastoma vascularization. Finally, shKDELC2 glioblastoma-conditioned medium (CM) stimulated TAM polarization and induced THP-1 cells to transform into M1 macrophages. In contrast, THP-1 cells co-cultured with compensatory overexpressed (OE)-KDELC2 glioblastoma cells increased IL-10 secretion, a biomarker of M2 macrophages. HUVECs co-cultured with shKDELC2 glioblastoma-polarized THP-1 cells were less proliferative, demonstrating that KDELC2 promotes angiogenesis. Mito-TEMPO and MCC950 increased caspase-1p20 and IL-1ß expression in THP-1 macrophages, indicating that mitochondrial ROS and autophagy could also interrupt THP-1-M1 macrophage polarization. In conclusion, mitochondrial ROS, ER stress, and the TAMs resulting from OE-KDELC2 glioblastoma cells play important roles in upregulating glioblastoma angiogenesis.

8.
Biomed Pharmacother ; 161: 114565, 2023 May.
Article in English | MEDLINE | ID: mdl-36958193

ABSTRACT

Global warming increases the incidence of heat stroke (HS) and HS causes the reduction of visceral blood flow during hyperthermia, leading to intestinal barrier disruption, microbial translocation, systemic inflammation and multiple organ failure. Cathelicidin LL-37 exhibits antimicrobial activities, helps innate immunity within the gut to maintain intestinal homeostasis, and augments intestinal wound healing and barrier function. Thus, we evaluated the effects and possible mechanisms of cathelicidin LL-37 on HS. Wistar rats were placed in a heating-chamber of 42 ̊C to induce HS. Changes in rectal temperature, hemodynamic parameters, and survival rate were measured during the experimental period. Blood samples and ilea were collected to analyze the effects of LL-37 on systemic inflammation, multiple organ dysfunction, and intestinal injury. Furthermore, LS174T and HT-29 cells were used to assess the underlying mechanisms. Our data showed cathelicidin LL-37 ameliorated the damage of intestinal cells induced by HS. Intestinal injury, systemic inflammation, and nitrosative stress (high nitric oxide level) caused by continuous hyperthermia were attenuated in HS rats treated with cathelicidin LL-37, and hence, improved multiple organ dysfunction, coagulopathy, and survival rate. These beneficial effects of cathelicidin LL-37 were attributed to the protection of intestinal goblet cells (by increasing transepithelial resistance, mucin-2 and Nrf2 expression) and the improvement of intestinal barrier function (less cyclooxygenase-2 expression and FITC-dextran translocation). Interestingly, high cathelicidin expression in the ileal samples of inflammatory bowel disease patients was associated with better clinical outcome. These results suggest that cathelicidin LL-37 could prevent heat stress-induced intestinal damage and heat-related illnesses.


Subject(s)
Heat Stress Disorders , Heat Stroke , Rats , Animals , Cathelicidins/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides , Multiple Organ Failure , Rats, Wistar , Heat Stroke/drug therapy , Inflammation
9.
Eur J Pharmacol ; 938: 175411, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36436590

ABSTRACT

Glioblastoma multiforme (GBM) is a deadly brain malignancy, and current therapies offer limited survival benefit. The phytosterol guggulsterone (GS) has been shown to exhibit antitumor efficacy. This study aimed to investigate the effects of GS on migration and invasion and its underlying mechanisms in human GBM cell lines. After GS treatment, the survival rate of GBM cells was reduced, and the migration and invasion abilities of GBM cells were significantly decreased. There was also concomitant decreased expression of focal adhesion complex, matrix metalloproteinase-2 (MMP2), MMP9 and cathepsin B. Furthermore, GS induced ERK phosphorylation and autophagy, with increased p62 and LC3B-II expression. Notably, treatment of in GBM cells with the proteasome inhibitor MG132 or the lysosome inhibitor NH4Cl reversed the GS-mediated inhibition of migration and invasion. In an orthotopic xenograft mouse model, immunohistochemical staining of brain tumor tissues demonstrated that MMP2 and cathepsin B expression was reduced in GS-treated mice. GS treatment inhibited GBM cell migration and invasion via proteasomal and lysosomal degradation, suggesting its therapeutic potential in clinical use in the future.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Glioblastoma/pathology , Matrix Metalloproteinase 2/metabolism , Cathepsin B , Cell Line, Tumor , Brain Neoplasms/pathology , Cell Movement , Proteasome Endopeptidase Complex/metabolism , Lysosomes/metabolism , Neoplasm Invasiveness
10.
Cancers (Basel) ; 14(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36428804

ABSTRACT

Glioblastoma is believed to be one of the most aggressive brain tumors in the world. ONX-0914 (PR957) is a selective inhibitor of proteasome subunit beta type-8 (PSMB8). Previous studies have shown that inhibiting PSMB8 expression in glioblastoma reduces tumor progression. Therefore, this study aimed to determine whether ONX-0914 has antitumor effects on human glioblastoma. The results indicated that ONX-0914 treatment inhibited survival in LN229, GBM8401, and U87MG glioblastoma cells. Cell cycle analysis showed that ONX-0914 treatment caused cell cycle arrest at the G1 phase and apoptosis in glioblastoma cells. The protein expression of BCL-2 was reduced and PARP was cleaved after ONX-0914 treatment. Furthermore, the levels of p53 and phosphorylated p53 were increased by ONX-0914 treatment in glioblastoma cells. ONX-0914 also induced autophagy in glioblastoma cells. Furthermore, the p53 inhibitor pifithrin attenuated apoptosis but enhanced autophagy caused by ONX-0914. In an orthotopic mouse model, TMZ plus ONX-0914 reduced tumor progression better than the control or TMZ alone. These data suggest that ONX-0914 is a novel therapeutic drug for glioblastoma.

11.
Cancers (Basel) ; 14(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36139556

ABSTRACT

Bladder cancer is one of the most prevailing cancers worldwide. Although treatments for urothelial carcinoma have improved, the rate of recurrence observed in the clinic is still high. The aim of this study was to evaluate whether cholesterol biosynthesis is involved in the effect of Farnesoid X Receptor (FXR) on bladder cancers. FXR overexpression contributed to activation of 5' AMP-activated protein kinase (AMPK) and decreased cholesterol levels. FXR overexpression reduced cholesterol biosynthesis and secretion by downregulating Sterol Regulatory Element Binding Protein 2 (SREBP2) and 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR) expression. In addition, an AMPK inhibitor, dorsomorphin, reversed the inhibition of migration, invasion and angiogenesis by FXR overexpression. In a metastatic xenograft animal study, FXR overexpression suppressed bladder cancer lung metastasis by decreasing matrix metalloproteinase-2 (MMP2), SREBP2 and HMGCR expression. Moreover, FXR overexpression combined with atorvastatin treatment further enhanced the downregulation of the migratory, adhesive, invasive and angiogenic properties in human urothelial carcinoma. In clinical observations, statin administration was associated with better survival rates of early-stage bladder cancer patients. Our results may provide guidance for improving therapeutic strategies for the treatment of urothelial carcinoma.

12.
Medicina (Kaunas) ; 58(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35888619

ABSTRACT

Oncocytic adrenal cortical neoplasms are rare cases and are divided into oncocytoma, oncocytic neoplasms of uncertain malignant potential and oncocytic adrenal cortical carcinomas, based on the Lin-Weiss-Bisceglia (LWB) histological system adopted in the current World Health Organization (WHO). We reported a 42-year-old female diagnosed with an oncocytic neoplasm of uncertain malignant potential initially, which turned out to be a carcinoma owing to distant metastasis to the scalp and lung. To our knowledge, this is the first published case of oncocytic adrenal cortical carcinoma with scalp metastasis. This case also highlights the limitation of the current diagnostic algorithm and emphasizes the importance of two parameters (PHH3 and Ki-67) for determining the malignant potential of oncocytic adrenal cortical neoplasms.


Subject(s)
Adenoma, Oxyphilic , Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Adenoma, Oxyphilic/diagnosis , Adrenal Cortex Neoplasms/diagnosis , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/diagnosis , Adrenocortical Carcinoma/pathology , Adult , Female , Humans
13.
Cancers (Basel) ; 14(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35681743

ABSTRACT

Lung cancer-related pleural fluid (LCPF) presents as a common complication with limited treatment. Beyond its function in lipid digestion, bile acid was identified as a potent carcinogen to stimulate tumor proliferation. Previous research indicated a correlation between serum bile acid levels and the risk of developing several gastrointestinal cancers. Our study identified elevated bile acid levels in LCPF and increased farnesoid X receptor (FXR) expression as bile acid nuclear receptors in pleural microvessels of lung adenocarcinoma. Additionally, LCPF stimulated the expression of proteins involved in bile acid synthesis and cholesterol metabolism in HUVECs including CYP7A1, StAR, HMGCR, and SREBP2. LCPF-induced endothelial motility and angiogenesis were counteracted by using ß-muricholic acid as an FXR antagonist. Moreover, we investigated the efficacy of cholesterol-lowering medications, such as cholestyramine, fenofibrate, and atorvastatin, in regulating LCPF-regulated angiogenesis. Along with suppressing endothelial proliferation and angiogenesis, atorvastatin treatment reversed cholesterol accumulation and endothelial junction disruption caused by LCPF. Statin treatment inhibited LCPF-induced endothelial FXR expression as well as the downstream proteins RXR and SHP. Based on the positive findings of suppressing endothelial angiogenesis, our group further incorporated the effect of statin on clinical patients complicated with LCPF. A Kaplan-Meier analysis revealed the clinical benefit of statin exposure in patients with lung adenocarcinoma with LCPF. Conclusively, our study demonstrated the ability of statin to alleviate LCPF-induced angiogenesis in patients with LCPF via FXR modulation.

14.
Int J Mol Sci ; 23(9)2022 May 09.
Article in English | MEDLINE | ID: mdl-35563650

ABSTRACT

(1) Background: Bladder cancer is a malignant tumor mainly caused by exposure to environmental chemicals, with a high recurrence rate. NR1H4, also known as Farnesoid X Receptor (FXR), acts as a nuclear receptor that can be activated by binding with bile acids, and FXR is highly correlated with the progression of cancers. The aim of this study was to verify the role of FXR in bladder cancer cells. (2) Methods: A FXR overexpressed system was established to investigate the effect of cell viability, migration, adhesion, and angiogenesis in low-grade TSGH8301 and high-grade T24 cells. (3) Results: After FXR overexpression, the ability of migration, adhesion, invasion and angiogenesis of bladder cancer cells declined significantly. Focal adhesive complex, MMP2, MMP9, and angiogenic-related proteins were decreased, while FXR was overexpressed in bladder cancer cells. Moreover, FXR overexpression reduced vascular endothelial growth factor mRNA and protein expression and secretion in bladder cancer cells. After treatment with the proteosome inhibitor MG132, the migration, adhesion and angiogenesis caused by FXR overexpression were all reversed in bladder cancer cells. (4) Conclusions: These results may provide evidence on the role of FXR in bladder cancer, and thus may improve the therapeutic efficacy of urothelial carcinoma in the future.


Subject(s)
Carcinoma, Transitional Cell , Receptors, Cytoplasmic and Nuclear/metabolism , Urinary Bladder Neoplasms , Cell Line, Tumor , Female , Humans , Male , Neovascularization, Pathologic/genetics , Proteasome Endopeptidase Complex , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factors
15.
Chin J Physiol ; 65(2): 93-102, 2022.
Article in English | MEDLINE | ID: mdl-35488675

ABSTRACT

Prostaglandin F2 receptor inhibitor (PTGFRN) promotes neoplastic cell migration and metastasis in some human cancers. However, the role of PTGFRN in human gliomas is still undetermined. First of all, PTGFRN messenger ribonucleic acid (mRNA) overexpression correlated with some poor prognostic factors of glioma after analyzing The Cancer Genome Atlas and Chinese Glioma Genome Atlas database. In order to detect the effect of PTGFRN expression on tumor characteristics of gliomas, U87MG, LN229, and glioblastoma 8401 glioma cell lines were cultured and prepared for western blot analysis and real-time polymerase chain reaction, respectively. The results revealed the overexpression of PTGFRN in all glioma cell lines as compared to normal brain cells. In addition, PTGFRN immunohistochemical (IHC) staining was performed on two sets of glioma tissue microarrays. Consistent with the results of in vitro studies, cytoplasmic PTGFRN immunostaining scores positively correlated with tumor grades and poor prognosis of gliomas. Therefore, PTGFRN IHC staining may be useful for the evaluation of tumor grades and overall survival time to facilitate the tailoring of appropriate treatment strategy. PTGFRN may serve as a potential pharmacologic target for the suppression of gliomagenesis.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/diagnosis , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Humans , Prognosis , Receptors, Prostaglandin
16.
Cells ; 11(5)2022 02 26.
Article in English | MEDLINE | ID: mdl-35269438

ABSTRACT

Impaired wound healing is an ongoing issue that cancer patients undergoing chemotherapy or radiotherapy face. Our previous study regarding lung-cancer-associated pleural fluid (LCPF) demonstrated its propensity to promote endothelial proliferation, migration, and angiogenesis, which are crucial features during cutaneous wound healing. Therefore, the current study aimed to investigate the effect of pleural fluid on cutaneous wound closure in vitro and in vivo using HaCaT keratinocytes and a full-thickness skin wound model, respectively. Both heart-failure-associated pleural fluid (HFPF) and LCPF were sequentially centrifuged and filtered to obtain a cell-free status. Treatment with HFPF and LCPF homogeneously induced HaCaT proliferation with cell cycle progression, migration, and MMP2 upregulation. Western blotting revealed increased PI3K/Akt phosphorylation and VEGFR2/VEGFA expression in HaCaT cells. When treated with the PI3K inhibitor, LCPF-induced keratinocyte proliferation was attenuated with decreased pS6 levels. By applying the VEGFR2 inhibitor, LCPF-induced keratinocyte proliferation was ameliorated by pS6 and MMP2 downregulation. The effect of LCPF-induced cell junction rearrangement was disrupted by co-treatment with a VEGFR2 inhibitor. Compared with a 0.9% saline dressing, LCPF significantly accelerated wound closure and re-epithelization when used as a dressing material in a full-thickness wound model. Histological analysis revealed increased neo-epidermis thickness and dermis collagen synthesis in the LCPF-treated group. Furthermore, LCPF treatment activated basal keratinocytes at the wound edge with the upregulation of Ki-67, VEGFA, and MMP2. Our preliminaries provided the benefit of wet dressing with pleural fluid to improve cutaneous wound closure through enhanced re-epithelization and disclosed future autologous application in cancer wound treatment.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Cell Proliferation , Humans , Keratinocytes/metabolism , Matrix Metalloproteinase 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Wound Healing/physiology
17.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216267

ABSTRACT

Bladder cancer (BC) has a high recurrence rate worldwide. The aim of this study was to evaluate the role of fatty acid binding protein 6 (FABP6) in proliferation and migration in human bladder cancer cells. Cell growth was confirmed by MTT and colony formation assay. Western blotting was used to explore protein expressions. Wound healing and Transwell assays were performed to evaluate the migration ability. A xenograft animal model with subcutaneous implantation of BC cells was generated to confirm the tumor progression. Knockdown of FABP6 reduced cell growth in low-grade TSGH-8301 and high-grade T24 cells. Cell cycle blockade was observed with the decrease of CDK2, CDK4, and Ki67 levels in FABP6-knockdown BC cells. Interestingly, knockdown of FBAP6 led to downregulation of autophagic markers and activation of AKT-mTOR signaling. The application of PI3K/AKT inhibitor decreased cell viability mediated by FABP6-knockdown additionally. Moreover, FABP6-knockdown reduced peroxisome proliferator-activated receptor γ and retinoid X receptor α levels but increased p-p65 expression. Knockdown of FABP6 also inhibited BC cell motility with focal adhesive complex reduction. Finally, shFABP6 combined with cisplatin suppressed tumor growth in vivo. These results provide evidence that FABP6 may be a potential target in BC cells progression.


Subject(s)
Autophagy/physiology , Cell Cycle/physiology , Cell Movement/physiology , Fatty Acid-Binding Proteins/metabolism , Gastrointestinal Hormones/metabolism , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Cell Survival/physiology , Down-Regulation/physiology , Gene Expression Regulation, Neoplastic/physiology , HEK293 Cells , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology
18.
Cancers (Basel) ; 14(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35205800

ABSTRACT

In recurrent glioblastoma, Gliadel wafer implantation after surgery has been shown to result in incomplete chemical removal of residual tumor and development of brain edema. Furthermore, temozolomide (TMZ) resistance caused by O6-methylguanine-DNA-methyltransferase (MGMT) activation and programmed cell death-ligand 1 (PD-L1) expression leads to immune-cold lesions that result in poorer prognosis. Cerebraca wafer, a biodegradable polymer containing (Z)-n-butylidenephthalide (BP), is designed to eliminate residual tumor after glioma resection. An open-label, one-arm study with four dose cohorts, involving a traditional 3 + 3 dose escalation clinical trial, of the Cerebraca wafer combined with TMZ on patients with recurrent high-grade glioma, was conducted. Of the 12 patients who receive implantation of Cerebraca wafer, there were no drug-related adverse events (AEs) or serious AEs (SAEs). The median overall survival (OS) of patients receiving low-dose Cerebraca wafer was 12 months in the group with >25% wafer coverage of the resected tumor, which is longer than OS duration in previously published studies (Gliadel wafer, 6.4 months). Patients who received high-dose Cerebraca wafer treatment had not yet died at the data cut-off date; a 100% progression-free survival (PFS) rate at six month was achieved, indicating the median OS of cohort IV was more than 17.4 months. In vitro study of the primary cells collected from the patients revealed that the IC50 of BP against tumor stem cells was four times lower than that of bis-chloroethylnitrosourea (BCNU). A synergistic effect between BP and TMZ was demonstrated by a reduction in MGMT expression. Furthermore, BP inhibited PD-L1 expression, thereby activating T-cell cytotoxicity and increasing interferon-gamma (IFN-γ) secretion. The better therapeutic effect of Cerebraca wafer on recurrent high-grade glioma could occur through re-sensitization of TMZ and reduction of PD-L1.

19.
Front Pharmacol ; 12: 741094, 2021.
Article in English | MEDLINE | ID: mdl-34733160

ABSTRACT

Background: The long-term effects of statin use on rehospitalization due to ischemic stroke (reHospIS) in hyperlipidemic patients are still unknown. Therefore, we aimed to assess the long-term risks of reHospIS for hyperlipidemic patients who were taking statins and nonstatin lipid-lowering medicines on a regular basis. Methods and Materials: The National Health Insurance Research Database in Taiwan was used to conduct a 6-year cohort study of patients >45 years old (n = 9,098) who were newly diagnosed with hyperlipidemia and hospitalized for the first or second time due to ischemic stroke (IS). The risk of reHospIS was assessed using Cox proportional hazards regression model. Results: Nonstatin lipid-lowering medicines regular users were associated with a higher risk of reHospIS compared to stains users (hazard ratio, HR = 1.29-1.39, p < 0.05). Rosuvastatin was the most preferred lipid-lowering medicine with lower HRs of reHospIS in hyperlipidemic patients whether they developed diabetes or not. Bezafibrate regular users of hyperlipidemic patients developing diabetes (HR = 2.15, p < 0.01) had nearly 50% lower reHospIS risks than those without diabetes (HR = 4.27, p < 0.05). Age, gender, drug dosage, comorbidities of diabetes and heart failure (HF), and characteristics of the first hospitalization due to IS were all adjusted in models. Moreover, increasing trends of HRs of reHospIS were observed from Rosuvastatin, nonstatin lipid-lowering medicines, Lovastatin, and Gemfibrozil to Bezafibrate users. Conclusion: Statins were associated with long-term secondary prevention of reHospIS for hyperlipidemic patients. Rosuvastatin seemed to have the best protective effects. On the other hand, Bezafibrate appears to be beneficial for hyperlipidemic patients developing diabetes. Further research into the combination treatment of statin and nonstatin lipid-lowering medicines in hyperlipidemic patients developing diabetes is warranted.

20.
Cell Death Discov ; 7(1): 313, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34702798

ABSTRACT

Glioblastoma (GBM) is a fatal cancer. Existing therapies do not have significant efficacy for GBM patients. Previous studies have shown that the collagen family is involved in the regulation of the extracellular environment of cancer cells, and these conditions could become an important factor for effective treatment. Therefore, we screened various collagen types and observed that the type V collagen α1 chain (COL5A1) gene plays a pivotal role in GBM. We further examined whether the overexpression of COL5A1 is common in mesenchymal subtypes and is related to the survival rate of GBM patients through several in silico cohorts. In addition, our cohort also showed a consistent trend in COL5A1 protein levels. Most importantly, we validated the cell mobility, metastatic ability and actin polymerization status caused by COL5A1 with two-way models. Based on these results, we established a transcriptomics dataset based on COL5A1. Moreover, PPRC1, GK and ESM1 were predicted by ingenuity pathway analysis (IPA) to be transcription factors or to participate downstream. We investigated the involvement of COL5A1 in extracellular remodeling and the regulation of actin filaments in the metastasis of GBM. Our results indicate that the COL5A1-PPRC1-ESM1 axis may represent a novel therapeutic target in GBM.

SELECTION OF CITATIONS
SEARCH DETAIL
...